WATER USE AND SUSTAINABILITY IN THE TUCSON BASIN: IMPLICATIONS OF A SPATIALLY NEUTRAL GROUNDWATER MANAGEMENT

Violeta Cabello, Nuria Hernández-Mora, Aleix Serrat-Capdevila, Leandro del Moral and Ed Curley

Water governance in the Tucson basin

Groundwater Management Act 1980

- Scale: Active Management Areas groundwater basins
- Goal: Safe yield as sustainability objective for 2025

Natural Recharge + Artificial Recharge ≤ Pumping

- Strategies
 - Growth control:
 - Limiting agricultural expansion
 - New urban developments: 100 years of Assured Water Supply
 - Efficiency: Conservation programs in municipal, agricultural and industrial sectors

Basin wide!

- New supplies:
 - Central Arizona Project (CAP) and effluent reuse
 - Aquifer recharge and recovery system
- Evaluation systems?

Research objectives

- Understand the water management system at the Tucson basin scale
- Compile and analyze available data on water use and groundwater management, relate them to socioeconomic and environmental variables
- Provide insights on the effectiveness and challenges of the current strategies to achieve safe yield

Research questions

- How has the water metabolism evolved since the approval of the GMA and the arrival of the CAP to the Tucson Basin?
- 2. Is water demand decreasing as an effect of conservation programs?
- 3. How does the spatially neutral approach to groundwater management shape vulnerabilities in the sociohydrological system?

Methods

Analytical framework: Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism - MuSIASEM

- Multilevel accounting of water use per source (source: water budget 1985-2000)
- Socioeconomic variables: human activity and land use (source: census and USGS national land cover 2000-2010)
- Impacts on ecosystem: groundwater levels, shallow GW areas (source: PAG)

Institutional analysis

- Water planning reports review
- Groundwater management & credits system (source: PAG; AWBA, CAP, AWRD credits accounting)

Collaborative science

- Dialogue with stakeholders: reframing research questions
- Management meetings attendance and diagnosis interviews

Water management & accounting

Key players

State level

- Arizona Department of Water Resources
- Central Arizona Conservation District (CAP)
- Central Arizona Groundwater Replenishment District
- Arizona Water Banking Authority

Tucson basin level

- Municipal providers. Irrigation Districts. Mining companies
- IPAG: Institutional and Policy Advisory Group
- GUAC: Groundwater Users Association Council
- Safe Yield Task Force

Time line water planning

CAP arrival / Quality conflicts Institutional reconfiguration for CAP firming In lieu program / Regional Recharge Plan

Conservation programs flexibilized

Question 1 How has the water metabolism evolved since the approval of the GMA and the arrival of the CAP to the Tucson Basin?

Water uses per source

https://violetacabello.quadrigram.com/space/#/vzy/TAMA4

Water sources

Recovery is allowing demand increase & overdraft decrease

Water use sectors

Demand growth pace decreased to 1/3; population increase pace slow down

Agriculture drives variability of overall demand, groundwater use and overdraft

How did water metabolism evolved after GMA and CAP?

- CAP was a tipping point
 - reconfiguration & diversification of water sources
 - substitution of groundwater enabled by increasing institutional & infrastructural complexity
- Technical achievement of safe yield 2015. Agriculture drives overdraft variability
- More on the paper...Main increase in water use from the urban domestic and comercial sectors. Mines becoming more efficient-----

Question 2. Is water demand decreasing as an effect of conservation programs?

Municipal demand break down

- Large Provider Residential Deliveries
 - Large Provider Lost and Unaccounted
 - Deliveries to Individual Users
- GPCD small provider

- Large Provider Non-residential Deliveries
- Small Provider Demand
- Exempt wells
- ← GPCD large provider

Conservation & water demand

Is water conservation curbing demand?

- Overall demand in the Tucson basin continues to grow
- Municipal:
 - Large providers are increasing efficiency
 - Growth of residential demand is accomodated through reductions in GPCD
 - Non-residential demand has increased
 - Overall municipal demand slightly decreased in the last 3 years due to change in accounting rules
 - Updated data needed! (last data 2009)
- Agriculture:
 - No significant effect on demand. Great variability affected by rainfall and commodity prices
 - Irrigated land & efficiency data needed!
- Did conservation goals become so flexible as to make them ineffective?

Question 3: How does the spatially neutral approach to groundwater management shape vulnerabilities in the socio-hydrological system?

Groundwater management system

2009	Fund	Natural recharge	81,964	
	Flows	CAP inflow	197,289	- 3 times local renewable resources!
		Reclamation	50,904	
		Artificial recharge	202,201	
		Annual recovery	124,118	
	Stocks	Long-Term Credits	798,844	
		USF-CAP	630,545	
		USF-Effluent	89,583	
		GSF- CAP in lieu	78,716	
2014 1.4 MAF in Long-Term Storage Credits		Augusta Resource Corp. U S R CAGRD - Conservati District	CAGRD Replenishmen t Reserve S. Bureau of eclamation on Tohono O'odham Nation AWBA (intraState) City of Tucson,Tucso n Water	

Groundwater management system

Annual Recovery criteria: 1 mile from recharge or outside if water table decrease < 4ft/year. Not applies to CAGRD members!!

Recovered water tricky: not accounted in overdraft

Groundwater management system

New developments accrue 50% of municipal groundwater pumping (not recovered). 13% is replenished, rest allowed in AWS

Groundwater use

Tohono Nation 0.006 AF/acre Agriculture 2.4 AF/acre Mines 1.3 AF/acre Urban service area 0.8 AF/acre **CAGRD** new subdivisions

Most aquifer is under 4 ft/year Everybody is in CAGRD

On-going adaptation strategies

ADWR proposal: Enhanced Aquifer Management

Increasing vulnerability to Colorado shortage?

Water accounting areas SYTF

Implications of spatially neutral GW management?

- Disconnection between recharge and pumping →
 Uneven achievement of safe yield
- Misleading creative accounting. Renaming withdrawal as recovery leaves it out of the equation. Territorial dissagregated data needed!!
- Unequal priviledged situation of CAGRD members Effectiveness of AWS as demand growth control mechanism?
- 3 main areas of overlap: developments & mines, water table declines and biodiversity hotspots

Insights on strategies to safe yield

- Growth limitations worked over agriculture but not over municipal. Industrial sector (mines, urban services etc.) have no permit limitations at all
- Conservation programs are enabling growth without mirroring residential demand increment. Not significant effect over other sectors
- Uneven spatial distribution of impacts of the recharge & recovery program on aquifers and dependent systems
- Distributed safe yield assessment needs dissagregated data

Thank you!!!!!